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ABSTRACT 
Under- and over-expanded jet flows are calculated for the Euler equations. The solution procedure is based 
on the two-stage Runge-Kutta time-stepping scheme. The studies of the flow field structure in diffusers, 
free jets and impinging jets have been investigated for a range of jet-to-stream total pressure ratios and 
for different exit Mach numbers. The resulting flows show a complex shock-shear expansion structure with 
Mach discs. Numerical results are compared with available experimental data and with previously published 
data. An oscillating phenomenon was observed in the case of free jets operating at sonic exit Mach number 
and in another case of impingement of under-expanded jets on a flat plate. 
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NOMENCLATURE 

d 
e 
F 
G 
l 

Mj 

P 
Pc 

Pa 
Pj 
Po 

nozzle exit diameter 
internal energy 
vector of x-directed fluxes 
vector of r-directed fluxes 
distance from nozzle exit plane to the 
plate 
exit Mach number 
pressure 
total pressure 
ambient pressure 
nozzle exit pressure 
stagnation pressure 

Pt 
r 
t 
T 
U 
u, v 

X 
∆r 
∆x 
∆t 
ρ 
γ 

pitot pressure 
radial coordinate 
time 
temperature 
vector of conserved variables 
velocity components 
axial coordinate 
radial increment 
axial increment 
time increment 
density 
ratio of specific heats 

INTRODUCTION 

Diffusers, free jets and impinging jets problems find many practical applications in aerospace 
industries. The flow field produced by expanding jets emanating from a rocket nozzle produces 
very complicated flow field structures. The structures of the flow field consist of jet shocks, 
reflecting shocks, Mach discs, jet boundaries, slip lines, mixing regions, etc. Mechanisms for the 
occurrence of Mach discs in the jet are not satisfactorily available in the literature. The topic is 
under investigation. 
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Solution of the parabolised Navier-Stokes equations using shock capturing methods for 
single- or two-phase, steady, supersonic jets has been reported by Dash and Wolf1. The solution 
of the unsteady Euler equations for obtaining the flow field of inder-expanded, two-dimensional, 
free jets was carried out by Sinha et al.2. Sommerfeld3 and Ishii and Omeda4 obtained results 
for a free jet with and without particles by solving the unsteady, inviscid equations. 

Due to the highly nonlinear nature of jet flows, the Euler equations are the lowest order 
approximation that gives a reasonable model for the fluid mechanics of these flows. In the present 
analysis, the flow field inside diffusers, free jets and impinging jets are analysed by solving the 
two-dimensional/axisymmetric Euler equations. The main aim of the present analysis is to 
compare the numerical results with experimental data in order to undertake validation tests. 

GOVERNING EQUATIONS 

Effects of turbulent mixing, which can substantially alter the flow far downstream of the nozzle, 
are neglected in this study. The assumption of large Reynolds number is relatively safe, except 
for the region near the jet boundary, where substantial mixing takes place5. The equations solved 
are the Euler equations describing the flow of an inviscid, compressible fluid. To capture shocks 
and discontinuities, the Euler equations are written in conservation form as: 

(1) 

where, 

and 
m = 0 for planar case 
m = l for axisymmetric case 

The total internal energy e is given by: 

(2) 

with the speed of sound: 

(3) 

where the specific heat ratio γ is taken as a constant for all the calculations reported here. 
An integral form of equation (1), over a finite volume fixed in time, is: 

(4) 

where Ω refers to the volume with boundary Г. The computational domain is divided into a 
finite number of quadrilateral cells. The conservative variables within each cell are calculated 
by their average value at the cell centre and such quantities are denoted by suffices (i,j). We 



EULER CALCULATIONS OF FLOW IN DIFFUSERS AND JETS 289 

obtain a system of ordinary differential equations by applying (4) separately to each cell. These 
equations have the form: 

(5) 

where ∆A is the cell volume, and Q represents the net absolute flux out of the cell. The fluxes 
are computed at cell faces by averaging the cell-centre fluxes on adjacent sides. The finite volume 
scheme (5) constructed in this manner reduces to a central-difference scheme and is second-order 
accurate in space provided that the mesh is smooth enough. The vector D is the local dissipation 
flux required to eliminate spurious oscillations typical to central difference algorithms. 

ARTIFICIAL DISSIPATION 

The cell centered spatial discretization method is nondissipative, so that any truncation and 
round-off errors are not damped in time, and oscillations may be present in steady-state solution. 
In order to eliminate these oscillations, dissipative terms D are added to (5). The dissipative term 
consists of the following operators in each direction: 

DU = DxU + DrU (6) 
The dissipative fluxes in each direction are given by: 

DxU = di + 1/2,j - di - 1/2,j (7a) 
DrU = di,j + 1/2 - di,j - 1/2 (7b) 

di + 1/2, j = {ε(2)
i + 1/2,j(Ui +1,j - Ui,j) - ε(4)(Ui + 2,j - 3Ui + 1, j + 3Ui,j - U i - 1 ) } (8) 

of second- and fourth-order in the conserved variables, U. The term di,j + 1/2, di,j - 1/2, etc., are 
calculated in an analogous manner. The numerical value of the constant e influences the solution 
accuracy and, hence, must be carefully calculated. The way that these ε coefficients are chosen 
is to adapt them to the local flow gradients. The second order coefficient ε(2) calculated as: 

ε(2) = max(vi + 1,j, vi,j) (9) 
where 

(10) 

where K(2) is a constant. However, the outcome is that ε(2) is positive, of order (∆x)2, and 
proportional to the second difference of pressure. It suppresses the oscillations around the shock. 
Fourth-order dissipation is added everywhere in the flow domain where the solution is smooth 
but are "switch-off" in the region of shock waves. The term involving second order differences 
is "switch-on" to damp oscillations near shock waves. The ε(4) is set to 

ε(4)
i + 1/2,j = max{(0, (K(4) - ε(2)

i + 1/2,j)} (11) 
where K(4) is another constant. The scaling [(∆Ai + 1/2,j)/∆t] in (8) confirms to the inclusion of 
the cell volume in the dependent variables of (5). Since Equation (8) contains undivided differences, 
it follows that if ε(2) = O(∆x)2 and ε(4) = O(1), then the added terms are of O(∆x)3, as will be the 
case in the regions where the flow is smooth. Near a shock wave ε(2) = O(1), and the scheme 
behaves locally as a first-order-accurate scheme. The recommended values of K(2) are in the range 
of 1 to 2, and K(4) in the range of 1/32 to 1/256. In the present numerical analysis, various values 
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of K(2) and K(4) are tried in order to control the numerical oscillations. The values of K(2) and 
K(4) are selected as 2.0 and 1/32, respectively. 

RUNGE-KUTTA TIME-STEPPING SCHEME 

The time-dependent governing equations (5) are integrated numerically by means of the classical 
second-order Runge-Kutta method6. Suppressing the subscripts (i,j) in (5), the following sequence 
of operations is used to obtain U at the time level n + 1 time level: 

U(o) = Un 

U(1)
 = U(o) - (Q(o) - D(o)) 

U(2)
 = U(o) - ∆t(Q(1) - D(o)) 

U n + 1 = U(2) 

(12) 

The dissipative terms are frozen at their values in the first stage. Here, only two stages are used, 
giving second-order accuracy in time. The scheme is stable for a Courant number ≤ 1. The 
time-step corresponds to a lower Courant number than that directed by linear stability. 

BOUNDARY CONDITIONS 

The boundary conditions are enforced by using the idea of image cells at the boundaries. In 
these, the flow properties are set according to the type of boundaries, and then a Riemann solver 
is applied to compute the flux across these boundaries. 

For a solid wall, the flow properties in the image cell are taken as those of the adjacent cell 
boundary cell, except that the normal component of the velocity is reflected to ensure the 
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impenetrability condition. The image cell is taken while applying the symmetry condition in 
case of axisymmetric flow. 

At the subsonic outlet boundary, the pressure is imposed whereas the remaining flow properties 
are extrapolated. For supersonic outflow, all of the properties in the cell are extrapolated from 
the adjacent interior cells. 

At inlet boundaries, the total pressure and temperature, as well as the flow angle are imposed 
for a subsonic flow. The static pressure is taken from the neighbouring interior cell. For a 
supersonic inlet, all of the flow properties are imposed. 

RESULTS AND DISCUSSION 

The above numerical algorithm is used to solve diffuser flow fields, free jets and impinging jets 
problems. Extensive numerical studies have been performed for various grid sizes. However, the 
grid size mentioned in the tables is achieved after a grid independent check was done. The 
computations were performed on an i860 based work-station. 

Diffuser flow field analysis 
The following test cases were considered in the numerical simulations: 

test Mj pj/pa Po/pa grid size Reference 
1 3.36 1.0 93.5 183 x 61 7 
2 1.00 25.76 49.1 107 x 47 8 
3 5.00 363.0 15000 107 x 41 9 
4 5.00 485.0 20000 107 x 41 9 
5 5.00 606.0 25000 107 x 41 9 

In test case 1, the ducted gas passes through a series of shocks. The expanding flow has an 
inlet condition of M∞ = 3.36, and pa = 1 atm. At x/Dj = 0, the top wall is turned down 20 degrees, 
then turned back parallel to the plane of symmetry at x/Dj = 0.825. The computed centre line 
pressure distribution inside the two-dimensional duct compares well with experimental data7 as 
shown in Figure 1. The isobar contours depict a series of shocks in Figure 2. 

Test case 2 is taken from Reference 8 in which the flow expands in a tube. The inlet flow 
conditions are Mj= 1.0, pj/pa = 25.76 and pc/pa = 49.1. Figure 3 shows a comparison between 
our numerical prediction and PHOENICS results8. It can be observed from the figure that the 
level of pressure in the tube was reasonably well predicted but oscillations are found downstream 
of the tube. A similar observation was also pointed out by Smith8. 

Test cases 3,4 and 5 correspond to highly under-expanded free jets impinging upon an adjacent 
surface9. The test conditions are Mj = 5.0, pc/pa = 15, 20 and 25 x 104, and pj/pa = 363, 485 and 
606. The distance from the plate to the nozzle axis is 2.0. The ratios of static to ambient pressure 
(Pj/pa) vs. nondimensional distance (x/Dj) are plotted in Figures 4, 5 and 6. It can be observed 
from the pressure distribution that the experimental data are matched very well up to the 
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impingement point. It is also observed from the figures that the ratio of the impingement to 
ambient pressure increases from 76 to 130 as pj/pa is increased from 363 to 606. There is 
disagreement after the impingement point which is attributed to viscous effects. Figure 7 shows 
isobars and isoMach còntours for the test case 5. It can be seen from the contour plots that the 
incident and reflected shocks are well captured. The flow field features indicate that the plume 
boundary shock strikes on the adjacent surface and forms an oblique impingement shock. 
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Free jets flow field analysis 
The following cases were solved numerically for free jets: 

test 
6 
7 
8 

9 
10 
11 

Mj 
1.0 
1.0 
1.0 
2.0 
2.20 
2.20 

Pj/Pa 
5.28 
7.92 

10.57 
1.445 
1.2 
0.8 

Po/Pa 
10.0 
15.0 
20.0 
4.87 

47.7 
47.7 

grid size 
270 x 51 
270 x 51 
270 x 51 
145 x 41 
161 x 41 
161 x 41 

Reference 
10 
10 
10 
11 
12 
12 
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Test cases 6, 7 and 8 are taken from the experimental work of Cobald10. Numerical analysis 
was carried out for a free air jet at Mj = 1.0 at three different ambient conditions. Figures 8, 9 
and 10 show the jet centre line nondimensional pitot pressure vs. x/(0.5Dj). The comparison 
between computed and experimental results shows disagreement between them. However, the 
disagreement between them decreases as pj/pa is increased. An oscillating phenomenon was 
observed around the convergence criterion, i.e., max|ρl + 1 - ρl| ≤ 10-5, where l is an iteration 
index. The reason for the disagreement is due to a fluctuating phenomenon around the steady 
state solution. An identical observation was seen by Ishii and Umeda4 while analysing free jets 
problem, using a piecewise linear interpolation method in conjunction with the method of 
characteristics. Figure 11 shows the Mach contour plots. It can be seen from the plot that all 
the essential flow field features are captured such as the jet boundaries, the Mach disc and the 
barrel shock. 

Figure 12 shows results for test condition 9. The pressure distribution along the centre line is 
in good agreement with experimental data11. 

Test conditions 10 and 11 correspond to under- and over-expanded supersonic free jet 
conditions, respectively. Experiments were conducted by Prasad12 for a nozzle exit Mach number 
Mj = 2.2 and pj/pa = 1.2 and 0.8. The exit diameter of the nozzle was 23 mm and the nozzle angle 
was 15 degrees. The comparison between the numerical and experimental12 results is depicted 
in Figure 13; good agreement between them is observed. Figure 14 displays density and Mach 
contour plots for under-expanded free jets. The shock cells, jet boundaries and Mach disc are 
visible in the density contour plots. The overall flow field features of the supersonic free jets is 
well captured by the present numerical scheme. 

Jet impinging flow field analysis 
The following test cases were analysed numerically for impinging jets: 

test Mj 1/Dj Po/Pa grid size Reference 
12 1.0 2.0 3.0 41 x 61 13 
13 1.0 2.5 3.0 41 x 61 13 
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When a surface is placed in the path of sonic jets, at some point on the surface there exist a 
stagnation region. In bringing the flow to rest, deceleration to subsonic velocities occurs, thus 
producing shock waves. Different parts of the impinging flow field have different shock structures. 
Such a complex flow field is analysed in test cases 12 and 13. Figure 15 shows comparisons 
between experimental and numerical results for po/pa = 3.0 at 1/Dj = 2.5. The numerical and 
experimental data13 exhibit good agreement. As can be observed from Figure 15, the numerical 
results show that the density along the axis of symmetry of the jet drops from its value at the 
nozzle exit plane to its minimum value at x/Dj = 0.8 and reaches its maximum value at x/Dj = 1.3 
downstream of the oblique shock wave. The density decreases again and reaches its minimum 
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value at x/Dj = 1.8, upstream of the shock which is formed in front of the fiat plate. Figures 16 
and 17 show the pressure distribution on the fiat plate obtained from the numerical calculations 
for 1/Dj = 2.0 and 2.5. It can be seen from the figures that the numerical results compare well 
with experimental data13. As the distance between the nozzle exit plane and the plate 1/Dj is 
increased from 2.0 to 2.5, the pressure ratio pj/pa decreases from 2.66 to 2.35. The pressure 
distribution on the plate surface fluctuates about the ambient pressure. It might be worthwhile 
mentioning here that the large scale flow characteristics of the jet remain unchanged. Although 
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they show a kind of oscillating phenomenon around the convergence criterion as mentioned 
earlier. Figure 18a shows the pressure distribution of the entire flow field between the nozzle 
exit plane and the plate obtained numerically for pc/pa = 3.0 and 1/Dj = 2.5. The jet expands 
from the high pressure at the nozzle exit plane to the lowest pressure where the oblique shock 
waves cross the ket axis. Figure 18b shows isobars for pc/pa = 3.0 and 1/Dj = 2.0. The isobars 
plot shows the Mach disc position. 
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CONCLUSIONS 

A finite volume discretization is used to solve the Euler equations in conjunction with a two-stage 
Runge-Kutta method. Numerical solutions are obtained for diffusers, free jets and impinging 
jets. Many test cases were performed to analyse the numerical results. Different grid arrangements 
were used in each test case in order to get grid independent numerical results. All the flow field 
features are captured by the present numerical analysis. Agreement and disagreement with 
experimental results are discussed. A fluctuation in axial pressure is found in the case of free 
jets issuing at sonic exit Mach number from a nozzle. In the case of impingement of 
under-expanded jets on a flat plate, the surface pressure fluctuates about the ambient pressure. 
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